$25 Million Gift from Gale and Ira Drukier Creates the Drukier Institute for Children's Health at Weill Cornell Medical College


NEW YORK (December 4, 2014) — Weill Cornell Medical College announced today that it has received a $25 million gift from Gale and Ira Drukier to establish a premier, cross-disciplinary institute dedicated to understanding the underlying causes of diseases that are devastating to children. Its goal will be to rapidly translate basic research breakthroughs into the most advanced therapies for patients.

The extraordinary gift names the Gale and Ira Drukier Institute for Children's Health and will enable the medical college to recruit a team of leading scientists, including a renowned expert who will serve as the Gale and Ira Drukier Director, to pursue innovative research that improves treatments and therapies for the littlest patients. The Drukier Institute, a marquee program that will be headquartered on the 12th floor of Weill Cornell's new Belfer Research Building, will also expand and enhance the medical college's already-distinguished research and clinical care programs that strive to end diseases and disorders that affect children and adolescents, including asthma, autism, cancer, cardiovascular disease, infectious diseases and schizophrenia."We couldn't be more grateful to Gale and Ira, whose generous gift exemplifies their commitment to advancing human health and their steadfast support of Weill Cornell Medical College," said Sanford I. Weill, chairman of the Weill Cornell Board of Overseers. "The Drukiers' investment will better the lives of children in New York and beyond, and will leave a lasting mark on our next generation."

"We are greatly appreciative of Gale and Ira Drukier, whose remarkable gift will enable Weill Cornell to expand its world-class research and clinical care programs for children, who can't be treated like little adults," said Dr. Laurie H. Glimcher, the Stephen and Suzanne Weiss Dean of Weill Cornell Medical College. "The Drukiers' generosity is critical in allowing us to attract the best and brightest minds in pediatric research, who will lead the way as we pursue innovative treatments and therapies that will ensure the health of children now and in the future."

"As parents and grandparents, Gale and I appreciate the tremendous impact medicine can have on growing children," said Dr. Ira Drukier, a member of the Weill Cornell Board of Overseers. "When you cure children, you give them their entire life back. It's with immense pride that we are able to make this investment, which will empower Weill Cornell Medical College to focus and direct all of its outstanding pediatric research under the auspices of one institute and provide vital resources to develop tomorrow's treatments and cures."

"It gives us great joy to be able to support Weill Cornell Medical College and make such a tremendous difference in children's lives," Dr. Gale Drukier said. "This gift also continues our enduring relationship with Cornell University, with which we have been connected for 40 years."

The Drukiers have a legacy of philanthropy at Cornell University, having provided generous support to its Herbert F. Johnson Art Museum and College of Architecture, Art and Planning.

"We at Cornell are immensely grateful to Gale and Ira Drukier for their extraordinary leadership and generosity, which has already been felt across the university," President David Skorton said. "With this spectacular new gift, the Drukiers are enabling us to achieve an unprecedented level of excellence in pediatric research. The bench-to-bedside approach of the Drukier Institute will have a lasting impact on children and their families, giving hope when they need it most."

"The gift from Gale and Ira Drukier establishing the Drukier Institute for Children's Health makes a powerful statement about the importance of focusing the energies of a major research institution on improving the health and wellbeing of children," said Dr. Gerald M. Loughlin, the Nancy C. Paduano Professor of Pediatrics and chairman of the Department of Pediatrics at Weill Cornell Medical College and pediatrician-in-chief at NewYork-Presbyterian/Weill Cornell Medical Center. "It is a wonderful legacy for these visionary philanthropists."

Caring for children is particularly challenging because their bodies are constantly changing as they grow, and their metabolisms and immune systems are vastly different than those of adults. Understanding the factors that spur growth in children can present possible lines of inquiry into other diseases, such as cancer, because tumors are also programmed to grow. There are also many genetic and developmental diseases that arise in childhood and pose serious health risks during adulthood. But treating these conditions can be arduous for pediatric patients. Many of the common treatments and therapies available to adults have toxic effects on children, making it critical to devise new and better interventions.

Using genomics and other cutting-edge research approaches, the cross-disciplinary Drukier Institute will drive excellence and innovation in pediatrics, seeking to rapidly and seamlessly catalyze research breakthroughs into the most advanced, safe and effective patient care. The Drukiers' generosity will empower the medical college to recruit five top-flight investigators — including a faculty member who conducts clinical research in pediatric genetics — to augment the distinguished team of physician-scientists already at Weill Cornell, as well as train the next generation of researchers in the field.

To help realize this vision, the Drukiers' gift will enable Weill Cornell to secure the latest research equipment, such as sequencing and informatics technology, as well as develop an infrastructure to establish a biobank. Investigators at the institute will work in close collaboration with clinicians in Weill Cornell's Department of Pediatrics to ensure that children immediately benefit from the latest research advances.

To encourage and support faculty development, research and education, the gift will endow the Drukier Lectureship, an annual lecture at Weill Cornell on a research or clinical topic in the field of children's health. It will also establish the Drukier Prize, which will be awarded once a year to a junior faculty member in the United States or abroad for excellence and achievement in advancing research on childhood diseases or disorders.

About Gale and Ira Drukier

A Cornell University graduate, Ira Drukier is co-owner of BD Hotels, LLC, a real estate development company that owns and operates more than two-dozen hotel properties in New York City, including the Mercer, Hotel Elysee and the Maritime.

Dr. Drukier graduated from Cornell in 1966 with a Bachelor of Science in Engineering with a focus on solid-state physics and in 1967 with a Master in Engineering, earning a doctorate in electrical engineering in 1973 from the Polytechnic Institute of Brooklyn. Upon graduation, he joined RCA Corporation's David Sarnoff Research Center, conducting research in the field of microwave semiconductors, which culminated in his development of the first high-power compound semiconductor field effect transistor. In 1976, he joined Microwave Semiconductor Corporation (MSC) and established a division to develop and manufacture high-power microwave transistors for commercial and military use. Siemens Corporation acquired MSC in 1981, and Dr. Drukier stayed on as corporate vice president until 1983, when he ventured into a career in real estate.

Dr. Drukier has served on the Weill Cornell Board of Overseers since 2012, sat on Cornell University's Board of Trustees for eight years and was a member of the Cornell Tech Task Force to help develop the Cornell NYC Tech campus on Roosevelt Island. He is chair of the council for the Johnson Art Museum at Cornell, chair of the board of trustees building committee of the Parrish Art Museum in Southampton, N.Y., and serves on the Metropolitan Museum of Art's President's Council. Dr. Drukier is vice-chair of the American Society for Yad Vashem and is a member of the Museum of Jewish Heritage's Board of Overseers. He has also published numerous papers and given lectures in the field of microwave electronics and has contributed a chapter to a book on Gallium Arsenide Field Effect Transistors.

Gale Drukier graduated from New York University's Steinhardt School of Culture, Education and Human Development in 1972 with a degree in speech pathology and audiology, later earning a Master of Science ('73) and a Doctor of Education degree ('79) in audiology from Teacher's College at Columbia University. Dr. Drukier began her career as an audiologist at Bellevue Hospital and at Veterans Affairs hospitals in metropolitan New York, later joining Trenton State University — now the College of New Jersey — as a professor. During her 17-year tenure there, Dr. Drukier conducted research, taught and developed the college's nationally accredited graduate program in audiology. She was consistently recognized by her students as the "Best Teacher." After retiring from teaching, Dr. Drukier joined her family's business, BD Hotels, and has managed and renovated properties on Manhattan's West Side for more than 12 years.

Dr. Drukier has continued to serve NYU since her graduation. She has been a member of the Steinhardt Dean's Council since 2005 as a supporter of the educational and fundraising initiatives of the school. In 2007, Dr. Drukier joined the NYU Board of Trustees and presently chairs its Academic Affairs Committee. In 2010, Dr. Drukier endowed and named the deanship of NYU's Steinhardt School of Education. She was awarded the Meritorious Service Award by NYU in 2013.

Dr. Drukier has also been active at Cornell University, chairing the Herbert F. Johnson Museum of Art's Program Committee and is a member of the Plantations Council. Dr. Drukier and her husband endowed the deanship at Cornell's College of Architecture, Art and Planning, endowed the curator of prints and drawings at the Herbert F. Johnson Museum and created a garden at Plantations at Cornell University. The couple is also active in the Parrish Art Museum in Southampton, N.Y., and serves on the Metropolitan Museum of Art's President's Council. Dr. Drukier is an animal lover, particularly of felines, and is on the board of directors of the Animal Rescue Fund of the Hamptons. The Drukiers have one daughter and four grandchildren.

Weill Cornell Medical College

Weill Cornell Medical College, Cornell University's medical school located in New York City, is committed to excellence in research, teaching, patient care and the advancement of the art and science of medicine, locally, nationally and globally. Physicians and scientists of Weill Cornell Medical College are engaged in cutting-edge research from bench to bedside aimed at unlocking mysteries of the human body in health and sickness and toward developing new treatments and prevention strategies. In its commitment to global health and education, Weill Cornell has a strong presence in places such as Qatar, Tanzania, Haiti, Brazil, Austria and Turkey. Through the historic Weill Cornell Medical College in Qatar, Cornell University is the first in the U.S. to offer a M.D. degree overseas. Weill Cornell is the birthplace of many medical advances — including the development of the Pap test for cervical cancer, the synthesis of penicillin, the first successful embryo-biopsy pregnancy and birth in the U.S., the first clinical trial of gene therapy for Parkinson's disease, and most recently, the world's first successful use of deep brain stimulation to treat a minimally conscious brain-injured patient. Weill Cornell Medical College is affiliated with NewYork-Presbyterian Hospital, where its faculty provides comprehensive patient care at NewYork-Presbyterian Hospital/Weill Cornell Medical Center. The Medical College is also affiliated with Houston Methodist. For more information, visit weill.cornell.edu.

This release was updated on Dec. 16, 2014.

Featured Image: 
Gale and Ira Drukier
Type of News: 
Press Releases
Institutional Research
Dr. Laurie H. Glimcher Sanford I. Weill
Deck (Subtitle): 

Institute Devoted to Bench-to-Bedside Research to Advance New Treatments and Therapies that Target Childhood Diseases and Disorders

Highlight this Story: 
External Affairs Gale and Ira Drukier Institute for Children’s Health Pediatrics

Older Fathers Produce Mutated Germ Cells that Crowd Out Normal Stem Cells


Researchers now recognize that older age in a father can increase the risk that his children will develop a variety of disorders, including autism, schizophrenia, even a common form of dwarfism. The question is, how?

Now, in Stem Cell Reports, a research team has solved the problem for one such disease, Apert syndrome, and says its findings may extend to other paternal age-associated disorders. It is testing those disorders to see if that is true.

Scientists have for some time believed that the mutation for Apert syndrome — in which children are born with a disfigured skull, face, hands and feet — first occurs in the healthy fathers' spermatogonial stem cells, the male germ stem cells that produce sperm. Building on that hypothesis, the Weill Cornell investigators provide evidence to support the idea that as a man ages, the number of germ stem cells with this mutation increases, crowding out normal stem cells in the testicle. Their increasing proportion leads to a greater chance of a mutated sperm fertilizing an egg than in a younger man with relatively fewer mutated cells.

Although Apert syndrome is a rare disease, risk "increases considerably when a man is in his late 30s and exponentially thereafter due to production of a greater proportion of mutated sperm," says the study's senior investigator Dr. Marco Seandel, assistant professor of cell and developmental biology in surgery at Weill Cornell.

The findings prove that at least in this disorder, there is truth to the "selfish selection" hypothesis that proposes that when mutated stem cells compete with normal stem cells, the abnormal cells prevail, Dr. Seandel says. Scientists have proposed the theory to explain the effects of paternal age on children's health.

"There had been no experimental proof for this hypothesis, but here we show that the Apert syndrome mutation makes male germ stem cells more competitive, and they go about replacing their normal counterparts," he says. "They seem to be turning on growth pathways that preferentially produce new stem cells with this mutation. The balance of stem cells shifts from normal to mutated."

Scientists have only recently understood that as men age, they produce more genetic abnormalities that can be passed on to their children, Dr. Seandel says. One example is the type of mutation in genes in which a single nucleotide — a "letter" in the genetic code — has been changed. These "point mutations" can lead to disorders or can contribute to susceptibility to disease, he says.

"The older the father is when a child is conceived, the more point mutations he passes on to that child. By contrast, the number of point mutations a child inherits from the mother appears to be relatively fixed — it does not change no matter how old the mother is," Dr. Seandel says. Older women, however, contribute other kinds of genetic defects, such as chromosomal abnormalities, he adds.

As more is known about the paternal age effect, a question arises as to what a man should do to protect his future children, Dr. Seandel says.

"The number of children born to older fathers is rising rapidly, and if the paternal age effect is as widespread as we think it might be, one solution for men who plan to delay having children is to consider banking their sperm," he says.

Featured Image: 
Dr. Marco Seandel
Type of News: 
News from WCM
Highlight this Story: 

Brain Cell Transplants Reverse Psychosis in "Schizophrenic" Mice


A team of neuroscientists has reversed psychosis-like features in mice, raising hope that scientists may ultimately be able to do the same for humans with schizophrenia – and potentially other kinds of psychiatric disorders.

interneurons in mice hippocampus

This high-magnification image shows interneurons (green) transplanted into the hippocampus of adult mice that lack a protein crucial to regulating interneuron numbers and that display behavioral deficits similar to those in schizophrenic patients. Transplanting a small population of interneurons into the brains of these mice normalized mental processing, indicating these cells are an important focus for future therapies for psychiatric disorders. Image: Gilani et al., 2014

The study, reported online in the May 2 issue of PNAS, demonstrated that a transplant of a small population of "interneurons" into the brains of affected mice normalized mental processing. About one-third of a particular type of interneurons, which help brain cells communicate with each other, are missing in these mice. Other studies in humans indicate that interneurons are also lost or are not functioning properly in patients with a variety of behavioral disorders, ranging from schizophrenia to autism spectrum.

"Loss of interneurons has a profound effect on overall brain activity. Disorders in the autism spectrum, seizure disorders, disorders such as schizophrenia and certain types of major depression that include psychosis as one of their features are believed to originate, in part, from reduced interneuron function," says the study's co-lead investigator, Dr. M. Elizabeth Ross, the Nathan Cummings Professor of Neurology and Neuroscience at the Feil Family Brain and Mind Research Institute at Weill Cornell Medical College.

"What excites us is that some of the major features of schizophrenia that are displayed by these mice can be reversed in adulthood, even after onset of symptoms, by adding a small number of cells in a very defined region of the brain's hippocampus," Dr. Ross says, referring to a region of the brain responsible for memory and certain types of behavior. "That provides the prospect that cell therapy could bring schizophrenia, and potentially other disorders related to faulty interneurons, under much better control by restoring the neuronal balance in critical brain regions."

While perfecting neuronal transplantation directly into human brains will take time, drug therapy that boosts the function of remaining interneurons and reverses symptoms of schizophrenia "could be advanced more rapidly," she says.

Dr. Ross is one of three principal investigators in the study, now in its eighth year. The other lead authors are from the New York State Psychiatric Institute-Columbia University and the Children's Hospital of Philadelphia.

The work is based on a finding by Dr. Ross and her colleagues that mice born without the gene that produces a protein crucial to regulating brain size and organization are missing between 30 and 40 percent of interneurons needed for normal brain architecture.

She says that mice that are deficient in the protein, cyclin D2, "lack a kind of rheostat or dimmer-switch control of neuronal activity. Activity in the brain is not appropriately regulated, leading to increased risk of seizures and psychosis-related behaviors in these mice."

The researchers found that these behavioral abnormalities are caused, in part, by hyperactive neurons in the hippocampus; faulty communication between neurons long believed to be linked to schizophrenia; and increased metabolic activity in the hippocampus.

"The fact that interneuron cell transplantation can reverse these important features in adult animals provides proof of principle that therapies targeting interneurons — either with drugs that enhance interneuron function or provision of cells to supplement their numbers — may be effective treatments in adults suffering from schizophrenia even once symptoms have occurred," Dr. Ross says.

Featured Image: 
interneurons in mice hippocampus
Type of News: 
News from WCM
Highlight this Story: